(2, -1, 2)

	YI-YIV.U	
Reg.	No:	
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR	
	(AUTONOMOUS) B.Tech I Year I Semester Supplementary Examinations Feb-2021	
	MATHEMATICS-I	
m!	(Common to All)	
Time: 3		
	(Answer all the Questions $5 \times 2 = 10$ Marks)	
1		2M
	a Find the Rank of A = $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$	
	b State Lagrange's Mean Value theorem.	2M
	c Define Curl of a vector.	2M
	d Define Convergence and Divergence of a Sequence.	2M
	e Find the Fourier constant a_0 for $f(x) = 1 - x^2$ in [-1, 1].	2M
	PART-B	
	(Answer all Five Units 5 x 10 = 50 Marks) UNIT-I	
2	a Express the Matrix as a sum of Symmetric and Skew-Symmetric matrix, $A = \begin{bmatrix} 3 & -2 & -6 \\ 2 & 7 & -1 \\ 5 & 4 & 0 \end{bmatrix}$	5M
	b Determine the Eigen Values of A ⁻¹ where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ OR	5M
3	Verify Cayley – Hamilton theorem $A = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & \neq 4 & 1 \end{bmatrix}$ UNIT-II	10M
4	a Find the volume of the reel-shaped solid formed by the revolution about the y- axis,	5M
	of the part of the parabola $y^2 = 4ax$ cut off by the latus- rectum. b verify Cauchy's mean value theorem for the function $\sin x$ and $\cos x$ in the interval	5M
	$[0, \pi/2]$	SIVI
	OR	
5	a Evaluate $\int_{0}^{1} x^{2} \left(\log \frac{1}{x} \right)^{3} dx$	5M
	b Express the polynomial $2x^3 + 7x^2 + x$ -6 in powers of (x-2) by Taylor's Series UNIT-III	5M
6	UNIT-III a If $z = xy^2 + x^2y$ where $x = a t^2$, $y = 2at$, find $\frac{dz}{dt}$	5M
	b Find the minimum value of $x^2 + y^2 + z^2$, given that $x + y + z = 3a$	5M
	OR	
7	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point	10M

Q.P. Code: 18HS0830

R18

8 a Test for Convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$

5M

b Test for Convergence of the series $\sum \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}$

5M

OR

9 State the value of x, for which the following series converge

10M

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

UNIT-V

10 Expand the function $f(x) = x^2$ as a Fourier series in $[-\pi, \pi]$ and hence deduce that

10M

(i)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$

(ii)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$

OR

11 a Find half range Sine Series of $f(x) = x^2$ on 0 < x < 4

5M

b Find half range Cosine series of f(x) = x(2-x) in $0 \le x \le 2$

5M

END